

LAB #: F000000-0000-0 PATIENT: Sample Patient ID: P12345 SEX: Female AGE: 37 CLIENT #: 12345 DOCTOR: Doctor's Data, Inc. 3755 Illinois Ave. St. Charles, IL 60174

Microbiology Profile, stool

BACTERIOLOGY CULTURE

1+ Klebsiella pneumoniae ssp pneumoniae

Commensal (Imbalanced) flora

Dysbiotic flora

- Expected/Beneficial flora 2+ Bacteroides fragilis group
- 2+ Bifidobacterium spp.
- 2+ Escherichia coli
- 1+ Lactobacillus spp.
- 2+ Enterococcus spp.
- 2+ Clostridium spp.
 - NG = No Growth

BACTERIA INFORMATION

Expected /Beneficial bacteria make up a significant portion of the total microflora in a healthy & balanced GI tract. These beneficial bacteria have many health-protecting effects in the GI tract including manufacturing vitamins, fermenting fibers, digesting proteins and carbohydrates, and propagating anti-tumor and anti-inflammatory factors.

Clostridia are prevalent flora in a healthy intestine. Clostridium spp. should be considered in the context of balance with other expected/beneficial flora. Absence of clostridia or over abundance relative to other expected/beneficial flora indicates bacterial imbalance. If *C. difficile* associated disease is suspected, a Comprehensive Clostridium culture or toxigenic *C. difficile* DNA test is recommended.

Commensal (Imbalanced) bacteria are usually neither pathogenic nor beneficial to the host GI tract. Imbalances can occur when there are insufficient levels of beneficial bacteria and increased levels of commensal bacteria. Certain commensal bacteria are reported as dysbiotic at higher levels.

Dysbiotic bacteria consist of known pathogenic bacteria and those that have the potential to cause disease in the GI tract. They can be present due to a number of factors including: consumption of contaminated water or food, exposure to chemicals that are toxic to beneficial bacteria; the use of antibiotics, oral contraceptives or other medications; poor fiber intake and high stress levels.

YEAST CULTURE

Normal flora

Result:

Rare

OLTOKE

Dysbiotic flora

No yeast isolated

MICROSCOPIC YEAST

Expected:

None - Rare

The microscopic finding of yeast in the stool is helpful in identifying whether there is proliferation of yeast. Rare yeast may be normal; however, yeast observed in higher amounts (few, moderate, or many) is abnormal.

Comments: Date Collected: 4/11/2011 Date Received: 4/13/2011 Date Completed: 4/21/2011 Yeast normally can be found in small quantities in the skin, mouth, intestine and mucocutaneous junctions. Overgrowth of yeast can infect virtually every organ system, leading to an extensive array of clinical manifestations. Fungal diarrhea is associated with broad-spectrum antibiotics or alterations of the patient's immune status. Symptoms may include abdominal pain, cramping and irritation. When investigating the presence of yeast, disparity may exist between culturing and microscopic examination. Yeast are not uniformly dispersed throughout the stool, this may lead to undetectable or low levels of yeast identified by microscopy, despite a cultured amount of yeast.

YEAST INFORMATION

Conversely, microscopic examination may reveal a significant amount of yeast present, but no yeast cultured. Yeast does not always survive transit through the intestines rendering it unvialble.

* Aeromonas, Campylobacter, Plesiomonas, Salmonella, Shigella, Vibrio, Yersinia, & Edwardsiella tarda have been specifically tested for and found absent unless reported.

Page: 1 Client: **12345**

INTRODUCTION

This analysis of the stool specimen provides fundamental information about the overall gastrointestinal health of the patient. When abnormal microflora or significant aberrations in intestinal health markers are detected, specific interpretive paragraphs are presented. If no significant abnormalities are found, interpretive paragraphs are not presented.

Beneficial Flora

One or more of the expected (beneficial) bacteria are low in this specimen. Beneficial flora include lactobacilli, bifidobacteria, clostridia, Bacteroides fragilis group, enterococci, and some strains of Escherichia coli. The beneficial flora have many health-protecting effects in the gut, and as a consequence, are crucial to the health of the whole organism. Some of the roles of the beneficial flora include digestion of proteins and carbohydrates, manufacture of vitamins and essential fatty acids, increase in the number of immune system cells, break down of bacterial toxins and the conversion of flavinoids into anti-tumor and anti-inflammatory factors. Lactobacilli, bifidobacteria, clostridia, and enterococci secrete lactic acid as well as other acids including acetate, propionate, butyrate, and valerate. This secretion causes a subsequent decrease in intestinal pH, which is crucial in preventing an enteric proliferation of microbial pathogens, including bacteria and yeast. Many GI pathogens thrive in alkaline environments. Lactobacilli also secrete the antifungal and antimicrobial agents lactocidin. lactobacillin, acidolin, and hydrogen peroxide. The beneficial flora of the GI have thus been found useful in the inhibition of microbial pathogens, prevention and treatment of antibiotic associated diarrhea, prevention of traveler's diarrhea, enhancement of immune function, and inhibition of the proliferation of yeast.

In a healthy balanced state of intestinal flora, the beneficial flora make up a significant proportion of the total microflora. Healthy levels of each of the beneficial bacteria are indicated by either a 3+ or 4+ (0 to 4 scale). However, some individuals have low levels of beneficial bacteria and an overgrowth of nonbeneficial (imbalances) or even pathogenic microorganisms (dysbiosis). Often attributed to the use of antibiotics, individuals with low beneficial bacteria may present with chronic symptoms such as irregular transit time, irritable bowel syndrome, bloating, gas, chronic fatigue, headaches, autoimmune diseases (e.g., rheumatoid arthritis), and sensitivities to a variety of foods. Treatment may include the use of probiotic supplements containing various strains of lactobacilli, bifidobacteria and enterococci and consumption of cultured or fermented foods including yogurt, kefir, miso, tempeh and tamari sauce. Polyphenols in green and ginseng tea have been found to increase the numbers of beneficial bacteria, yeast, or parasites.

Percival M. Intestinal Health. Clin Nutr In. 1997;5(5):1-6.

Fuller R. Probiotics in Human Medicine. Gut. 1991;32: 439-442.

Siitonen S, Vapaatalo H, Salminen S, et al. Effect of Lactobacilli GG Yoghurt in Prevention of Antibiotic Associated Diarrhea. Ann Med. 1990; 22:57-59.

© 1999-2011 Doctor's Data, Inc.

Oksanen P, Salminen S, Saxelin M, et al. Prevention of Travelers' Diarrhea by Lactobacillus GG. Ann Med. 1990; 22:53-56.

Perdigon G, Alvarez M, et al. The Oral Administration of Lactic Acid Bacteria Increases the Mucosal Intestinal Immunity in Response to Enteropathogens. J Food Prot. 1990;53:404-410.

Valeur, N, et al. Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract. Appl Environ. Microbiol. 2004 Feb; 70(2):1176-81.

Elmer G, Surawicz C, and McFarland L. Biotherapeutic agents - a Neglected Modality for the Treatment and Prevention of Intestinal and Vaginal Infections. JAMA. 1996; 275(11):870-876.

Fitzsimmons N and Berry D. Inhibition of Candida albicans by Lactobacillus acidophilus: Evidence for Involvement of a Peroxidase System. Microbio. 1994; 80:125-133

Weisburger JH. Proc Soc Exp Biol Med 1999;220(4):271-5.

Imbalanced flora

Imbalanced flora are those bacteria that reside in the host gastrointestinal tract and neither injure nor benefit the host. Certain dysbiotic bacteria may appear under the imbalances category if found at low levels because they are not likely pathogenic at the levels detected. When imbalanced flora appear, it is not uncommon to find inadequate levels of one or more of the beneficial bacteria and/or a fecal pH which is more towards the alkaline end of the reference range (6.5 - 7.2). It is also not uncommon to find hemolytic or mucoid E. coli with a concomitant deficiency of beneficial E. coli and alkaline pH, secondary to a mutation of beneficial E. coli in alkaline conditions (DDI observations). Treatment with antimicrobial agents is unnecessary unless bacteria appear under the dysbiotic category.

Mackowiak PA. The normal microbial flora. N Engl J Med. 1982;307(2):83-93.

Microscopic yeast

Microscopic examination has revealed yeast in this stool sample. The microscopic finding of yeast in the stool is helpful in identifying whether the proliferation of fungi, such as Candida albicans, is present. Yeast is normally found in very small amounts in a healthy intestinal tract. While small quantities of yeast (reported as none or rare) may be normal, yeast observed in higher amounts (few, moderate to many) is considered abnormal.

An overgrowth of intestinal yeast is prohibited by beneficial flora, intestinal immune defense (secretory IgA), and intestinal pH. Beneficial bacteria, such as Lactobacillus colonize in the intestines and create an environment unsuitable for yeast by producing acids, such as lactic acid, which lowers intestinal pH. Also, lactobacillus is capable of releasing antagonistic substances such as hydrogen peroxide, lactocidin, lactobacillin, and acidolin.

Many factors can lead to an overgrowth of yeast including frequent use of antibiotics (leading to insufficient beneficial bacteria), synthetic corticosteroids, oral contraceptives, and diets high in sugar. Although there is a wide range of symptoms which can result from intestinal yeast overgrowth, some of the most common include brain fog, fatigue, reccurring vaginal or bladder infections, sensitivity to smells (perfumes, chemicals, environment), mood swings/depression, sugar and carbohydrate cravings, gas/bloating, and constipation or loose stools.

A positive yeast culture (mycology) and sensitivity to prescriptive and natural agents is helpful in determining which anti-fungal agents to use as part of a therapeutic treatment plan for chronic colonic yeast. However, yeast are colonizers and do not appear to be dispersed uniformly throughout the stool. Yeast may therefore be observed microscopically, but not grow out on culture even when collected from the same bowel movement.

Page: 4 Client: **28638**

© 1999-2011 Doctor's Data, Inc.